Двигательные нарушения
Двигательные нарушения. Проявляются слабостью, тремором и ограничением объема движений. Особого внимания заслуживают контрактуры. Первый симптом, на который обращают внимание пациенты, — это повышение мышечного тонуса в пораженной конечности. Пациенты отмечают появление тугоподвижности в кисти или стопе, что субъективно описывается: «конечность как будто смазана клеем». Таким образом, объем пассивных движений в конечности сохранен, а активные движения затруднены. Постепенно тугоподвиж- ность нарастает и появляются ограничения не только активных, но и пассивных движений. Ограничение активных движений в конечности нередко связано также с болевым синдромом, который появляется либо усиливается при движении, периферическим парезом, связанным с повреждением нерва, отеком. При повышении мышечного тонуса объем пассивных движений сохранен полностью, но отмечается боль и тугоподвиж- ность при активных движениях.
Стадии заболевания. В течении КРБС выделяют три стадии без четкой привязанности к продолжительности каждой из них, которая индивидуально колеблется в широких пределах.
Основным признаком первой (начальной) стадии является боль, описываемая пациентами как жгучая, ноющая, иногда леденящая, глубокая и пульсирующая. К боли присоединяется отек и тугоподвижность конечности. Движения могут нарушаться не только из-за боли, но и вследствие развития пареза. Для пареза характерны умеренная выраженность, усиление после введения катехоламинов и уменьшение в ответ на введение симпатолитических средств, может отмечаться мелкоамплитудный постуральный тремор пораженной конечности.
Во второй (средней) стадии дистрофические изменения и отек ведут к огрублению кожи. Ее покраснение постепенно сменяется бледностью или цианотичностью, нарастает сухость и атрофия кожи и подкожной жировой клетчатки. Усиливается тугоподвижность суставов. При рентгенографии и сцинти- графии кистей или стоп выявляется пятнистый мелкоочаговый остеопороз (остеопороз Зудека).
В третьей (поздней) стадии боль носит постоянный и интенсивный характер, усиливается при малейшем движении поврежденной конечности, отечность спадает, но периартикулярные уплотнения остаются. Конечность деформируется за счет атрофии мышц и контрактур. Во второй и особенно в третьей стадии заболевания наблюдаются изменения личности больного в виде тревожно-депрессивных и ипохондрических расстройств.
Патофизиологические механизмы спонтанной боли. В основе развития спонтанной (стимул-независимой) боли лежит активация первичных С-афферентов. Потенциал действия на мембране нейронов развивается в результате функционирования ионного насоса, осуществляющего транспорт ионов натрия, – натриевых каналов. В мембранах чувствительных нейронов обнаружено два типа натриевых каналов: первый тип — чувствительный к тетродотоксину и второй тип — нечувствительный к тетродотоксину (англ. «tetrodotoxinresistant» — TTX–R). Тетродотоксин является самым сильным из известных токсинов органического происхождения и содержится во внутренних органах рыбы-шара (она водится в морях Юго-Восточной Азии), относящейся к семейству Тетродонтов.
Первый тип каналов, чувствительных к тетродотоксину, отвечает за генерирование потенциала действия и расположен во всех чувствительных нейронах.
Второй тип каналов, которые нечувствительны к тетродотоксину (TTX–R), находится только в специфических ноцицептивных нейронах (англ. «sensoryneuron–specific» — SNS). Эти каналы гораздо медленнее активируются и инактивиру- ются по сравнению с каналами первого типа и так же медленно вовлекаются в развитие патологического болевого состояния.
Выделяют два вида TTX–Rканалов: SNS1/PN3 и SNS2/ NaN. У человека при повреждении периферического нерва отмечается увеличение каналов SNS1 при персистирующей боли, аллодинии и гипералгезии, а количество SNS2 не меняется. Повышение плотности SNS1 натриевых каналов ведет к развитию очагов эктопического возбуждения как в аксоне, так и в самой клетке, которые начинают генерировать усиленные разряды потенциалов действия. Кроме того, после поражения нерва и поврежденные, и интактные афференты приобретают способность генерировать эктопические разряды за счет активации тетродон-нечувствительных натриевых каналов, что и ведет к развитию патологической импульсации из аксонов и нейронов поврежденных афферентов.
В ряде случаев стимул-независимая боль является симпатически обусловленной. Развитие симпатически обусловленной боли связано с двумя механизмами. Во-первых, после повреждения периферического нерва на мембранах поврежденных и неповрежденных аксонов С-волокон начинают появляться у-адренорецепторы (в норме на этих волокнах отсутствуют), чувствительные к циркулирующим катехоламинам, выделяющимся из терминалей постганглионарных симпатических волокон.
Во-вторых, повреждение нерва также вызывает прорастание симпатических волокон в узел заднего корешка, где они оплетают в виде «корзинок» тела чувствительных нейронов, и таким образом активация симпатических терминалей провоцирует активацию чувствительных волокон. Однако не вся спонтанная боль развивается только вследствие активации первичных ноцицепторов. В основе развития спонтанной боли также участвуют механизмы, связанные с нарушением процессов торможения на уровне заднего рога.
Нейроны заднего рога спинного мозга получают информацию от первичных афферентов. Активность нейронов задних рогов определяется не только возбуждающей периферической стимуляцией, но и тормозными влияниями, которые могут быть спинальными или нисходящими центральными. Таким образом, усиление тормозных влияний ведет к уменьшению активности нейронов заднего рога, что лежит в основе «воротного контроля» поступающей афферентации. Поражение периферического нерва может снижать ингибирующий контроль нейронов задних рогов различными путями.
Повреждение нерва ведет к снижению концентрации у-аминомаслянной кислоты (ГАМК), которая оказывает тормозное влияние, что вызывает нарушение регуляции ГАМК-ергических и опиатных рецепторов, расположенных на пресинаптических мембранах первичных сенсорных нейронов и на постсинаптических мембранах нейронов заднего рога. Кроме того, в результате развития эксайтотоксических реакций, ведущих к развитию механизмов апоптоза или программируемой смерти клеток, связанных с поражением периферического нерва, погибают вставочные нейроны, локализованные во второй пластине клеток заднего рога, многие из которых выполняют тормозную функцию.
В результате этих процессов вторичные чувствительные аф- ференты лишаются тормозных механизмов и начинают генерировать патологическую импульсацию, передающуюся в ЦНС даже при отсутствии активности в первичных чувствительных афферентах.
Патофизиологические механизмы гипералгезии. Механическая гипералгезия является одним из наиболее общих проявлений болевой нейропатии. Динамическая гипералгезия – это следствие усиленного ответа чувствительных нейронов заднего рога спинного мозга на стимуляцию, проводимую по Ab-волокнам от низкопороговых механорецепторов. В норме активация низкопороговых механорецепторов не связана с болевыми ощущениями. Развитие динамической гипералгезии (аллодинии) связано с развитием центральной сенситизации. В основе центральной сенситизации лежит стойкая деполяризация мембран. Основным возбуждающим нейротрансмиттером в первичных афферентах является глутамат.
Существует два типа глутаматных рецепторов на постсинаптической мембране чувствительных нейронов задних рогов спинного мозга: первый — это рецепторы амино-3-гидрокси- 5-метилсоксазол-4-пропионовой кислоты (АМРА-рецепторы) и второй — это N-метил-О-аспартат-рецепторы. Активация ноцицепторов ведет к высвобождению глутамата из пресинаптических мембран, и он, взаимодействуя с постсинаптическими глутаматными АМРА-рецепторами, вызывает быструю деполяризацию мембран нейронов заднего рога и при превышении порога возбуждения генерирует потенциал действия. Этот механизм лежит в основе проведения нормальных ноцицептивных стимулов.
Другой тип глутаматных рецепторов — это N–Meran–D–acnapтат-рецепторы (NMDA-рецепторы), связанные с кальциевыми каналами клеточных мембран, находящихся в неактивном состоянии. Эти каналы неактивны, поскольку их поры, как «пробкой», блокированы ионами магния. Когда канал блокирован ионом магния, глутамат не может его активировать. Однако при развитии преходящей деполяризации мембраны, связанной с функцией ноцицепции, эти каналы открываются, обеспечивая транспорт кальция, а после восстановления полярности снова закрываются. В случае поражения периферического нерва процессы поляризации и деполяризации клеточных мембран претерпевают глубокие изменения. Субстанция Р, находящаяся вместе с глутаматом в центральных терминалях первичных афферентов, при поражении нерва выделяется и активирует нейрокинин-1-рецепторы, в результате
Центральная сенситизация характеризуется тремя признаками: появлением зоны вторичной гипералгезии; усилением ответа на надпороговые раздражения; появлением ответа на подпороговое раздражение. Эти изменения клинически выражаются появлением гипералгезии на болевые стимулы, распространяющейся гораздо шире в зонах повреждения, и включают эффект гипералгезии на неболевую стимуляцию. Распространение боли за пределы зоны иннервации пораженного нерва является проявлением не психогенных нарушений, а наиболее общим признаком центральной сенситизации. Холодовая и механическая гипералгезия также являются проявлениями центральной сенситизации.
У части пациентов аллодиния (динамическая гипералгезия) может наблюдаться при отсутствии других признаков спонтанной боли. В этом случае активация нейронов задних рогов, связанных с Ab-волокнами, развивается не за счет раздражения низкопороговых механорецепторов, а за счет нарушения механизмов, обеспечивающих центральные тормозные влияния. Эти механизмы связаны, во-первых, с нисходящими серотонин- и норадренергическими влияниями. Серотонин действует на 5НТ-рецепторы, адренергические влияния осуществляются через спинальные а2-рецепторы, которые тормозят выделение субстанции Р из центральных терминалей первичных афферентов.
Во-вторых, это феномен «прорастания» (англ. sprouting) А-волокон в заднем роге спинного мозга. В норме центральные терминали А-волокон находятся во всех пластинах клеток заднего рога, за исключением II пластины, которая получает центральные терминали исключительно от ноцицептивных С-афферентов. Повреждение периферического нерва вызывает атрофию С-волокон и индуцирует прорастание центральных терминалей А-волокон во II пластину. Функционально значимо в этом процессе то, что в норме нейроны второй пластины получают только ноцицептивную информацию и поступление неболевой стимуляции может ошибочно расцениваться нервной системой как боль.
Этот механизм является анатомическим субстратом аллодинии. В-третьих, это механизм переключения фенотипа. Его суть в том, что в результате повреждения нерва могут меняться его фенотипические свойства. Эти свойства нейрона, связанные с синтезом белков, используемых для его роста и поддержания жизнедеятельности, контролируются фактором роста нервов. Фактор роста нервов ретроградно с аксоплазматическим током транспортируется от иннервируемых тканей к телу чувствительного нейрона, где регулирует концентрацию нейропептидов, выполняющих функцию трансмиттеров.
Травматическое повреждение аксона или блок аксоплазматического транспорта, вызванный применением цитостати- ков, вызывает глубокие фенотипические изменения, связанные с разобщением связей, которые в норме клетка постоянно поддерживает с иннервируемыми тканями. После повреждения нерва происходит нарушение дифференциации шванновских клеток Ab-волокон, и они вместо миелина начинают синтезировать нейропептиды, такие как субстанция Р и кальцитонин-ген-связанный пептид, которые в норме встречаются только в первичных афферентах С- и Ad-волокон.
В результате подобных изменений фенотипических свойств стимуляция низкопороговых механорецепторов, связанных с Ab-волоконами, может вызывать выделение субстанции Р и ее последующее взаимодействие с постсинаптическими мембранами нейронов заднего рога спинного мозга с развитием их гипервозбудимости, в норме развивающейся только на ноцицептивные стимулы. Развитие первичной гипералгезии связано со снижением порога возбуждения в периферических терминалях ноцицепторов и называется периферической сенситизацией. В результате повреждения нерва развивается антидромное проведение импульсов по сенсорным волокнам.
Эти антидромные импульсы стимулируют выделение из периферических терминалей субстанции Р и кальцитонинген-связанного пептида, которые вызывают периферическую сенситизацию как поврежденных, так и неповрежденных волокон.
Патофизиологические механизмы вегетативно-трофических расстройств. При поражении периферического нерва в основном страдают толстые, хорошо миелинизированные А-волокна, тогда как мало миелинизированные Ау- и А5- волокна и С-волокна более устойчивы к повреждению. Афферентные Ау- и А5-волокна состоят из аксонов малых у-мотонейронов, которые вызывают сокращение интрафузальных мышечных волокон и увеличение тонуса скелетной мускулатуры.
Пучки волокон на разных уровнях нерва расположены различно: или параллельно на определенном расстоянии, или образуют сложный межпучковый переплет. В результате возникновения в этих зонах за счет поражения периферического нерва феномена деполяризации может возникать переключение афферентного стимула с двигательных эфферентных волокон на эфферентные симпатические С-волокна.
Это переключение вызывает возбуждение симпатических эфферентов и активный выброс нейромедиаторов (катехоламины, ацетилхолин, гистамин, серотонин), обеспечивающих вегетативно-трофическую регуляцию. Медиаторы выделяются на окончаниях нервных волокон, вступают в реакцию со специфическими рецепторами, передавая импульс от нейрона к эффекторной клетке (транссинаптический акцессорный способ передачи нервного стимула).
Экстрасинаптический способ — это выделение медиаторов из синапсов в межклеточную жидкость и диффузия их к ближайшим эффекторным клеткам, не имеющим прямых контактов с нервными окончаниями. Именно внесинаптическое взаимодействие позволяет объяснить распространение вегетативно-трофических расстройств за пределы области иннервации пораженного нерва. Чрезмерное выделение нейромедиаторов обусловливает развитие вегетативно-трофических расстройств, которые характерны для первого комплекса. Постепенное истощение симпатической регуляции вызывает недостаток трофического влияния и развитие дистрофии в виде второго комплекса вегетативно-трофических растройств.